Tag: "genome"
- The development of high-quality chromosomally assigned reference genomes constitutes a key feature for understanding genome architecture of a species and is critical for the discovery of the genetic blueprints of traits of biological significance. South American camelids serve people in extreme environments and are important fiber and companion animals worldwide. Despite this, the alpaca reference genome lags far behind those available for other domestic species. Here we produced a chromosome-level improved reference assembly for the alpaca genome using the DNA of the same female Huacaya alpaca as in previous assemblies. We generated 190X Illumina short-read, 8X Pacific Biosciences long-read and 60X Dovetail Chicago® chromatin interaction scaffolding data for the assembly, used testis and skin RNAseq data for annotation, and cytogenetic map data for chromosomal assignments. The new assembly VicPac3.1 contains 90% of the alpaca genome in just 103 scaffolds and 76% of all scaffolds are mapped to the 36 pairs of the alpaca autosomes and the X chromosome. Preliminary annotation of the assembly predicted 22,462 coding genes and 29,337 isoforms. Comparative analysis of selected regions of the alpaca genome, such as the major histocompatibility complex (MHC), the region involved in the Minute Chromosome Syndrome (MCS) and candidate genes for high-altitude adaptations, reveal unique features of the alpaca genome. The alpaca reference genome VicPac3.1 presents a significant improvement in completeness, contiguity and accuracy over VicPac2 and is an important tool for the advancement of genomics research in all New World camelids. more »
- In 2005, the alpaca became the first camelid species to have its genome sequenced, in an effort led by Dr. Warren Johnson at the National Cancer Institute. The Alpaca Genome Project, which also includes the generation of a medium-density Radiation Hybrid (RH) map for the alpaca, set the foundation for genomic studies in camelids. more »
- Genome-wide association studies (GWAS) provide a powerful approach for identifying quantitative trait loci without prior knowledge of location or function. To identify loci associated with wool production traits, we performed a genome-wide association study on a total of 765 Chinese Merino sheep (JunKen type) genotyped with 50 K single nucleotide polymorphisms (SNPs). In the present study, five wool production traits were examined: fiber diameter, fiber diameter coefficient of variation, fineness dispersion, staple length and crimp. We detected 28 genome-wide significant SNPs for fiber diameter, fiber diameter coefficient of variation, fineness dispersion, and crimp trait in the Chinese Merino sheep. About 43% of the significant SNP markers were located within known or predicted genes, including YWHAZ, KRTCAP3, TSPEAR, PIK3R4, KIF16B, PTPN3, GPRC5A, DDX47, TCF9, TPTE2, EPHA5 and NBEA genes. Our results not only confirm the results of previous reports, but also provide a suite of novel SNP markers and candidate genes associated with wool traits. Our findings will be useful for exploring the genetic control of wool traits in sheep. more »
- I have started a DNA bank for future use mapping potentially genetic diseases and phenotypic traits in alpacas and other camelids. Now that the alpaca genome project is completed, and the first alpaca genome has been completely sequenced, we can really dive into finding the genes involved in camelid health, disease, and various phenotypes of interest to breeders. more »