• Consequences of Differing Wool Growth Rates on Staple Strength of Merino Wethers with Divergent Staple Strengths

    An experiment was conducted to determine the effects of dietary protein intake after a period of weight loss on the wool components of staple strength for sheep with a history of low or high staple strength (18.0 vs 34 Nlktex). After being fed to lose 15% of their liveweight over 10 weeks, sheep within each staple strength group were assigned in equal numbers to either a low or high protein diet designed to re-gain initial liveweight in 8 weeks. Liveweight, feed intakes and the growth, fibre diameter and fibre length characteristics of wool were measured at regular intervals. After the weight loss and growth regimes were imposed there was no difference in staple strength between the low and high staple strength groups (14.4 and 14.9 Nt ktex, respectively). However, coefficient of variation (CV) of fibre diameter remained significantly different between staple strength groups. Wool growth rate at the time of diet change was the only significant component of wool growth and fibre measurements that was significantly correlated with staple strength. Supplying a high protein diet after a period of weight loss increased wool growth. This changed the position of break along the staple and increased the fibre diameter at the point of break from 13.0 to 13.9 J.1m without affecting staple strength. It also increased fibre diameter and mean fibre length growth rate. The low staple strength group had a significantly higher CV of fibre length than the high staple strength group. Fibre length growth rate to fibre diameter ratio was stable over time in the high staple strength phenotype but declined with time in the low staple strength line. The results suggest that large weight losses will reduce the difference in staple strength between animals with a history of large difference in staple strength. Rate of wool growth after the point of break did not influence this staple strength outcome. more »
  • A Review of Sheep Wool Quality Traits

    The commercial value of unprocessed wool is determined by its intrinsic quality; an indication of capacity to meet both processor and consumer demands. Wool quality is evaluated through routine assessment of characteristics that include mean fibre diameter, coefficient of variation, staple characteristics, comfort factor, spinning fineness, fibre curvature and clean fleece yield. The association between these characteristics with wool quality stems from their correlation with raw wool processing performance in terms of speed, durability, ultimate use as apparel or carpet wool, and consumer satisfaction with the end-product. An evaluation of these characteristics allows wool quality to be objectively quantified prior to purchase and processing. The primary objective of this review was to define and explore these aforementioned key wool characteristics, focusing on their impact on quality, desirable parameters and methodology behind their quantification. An in-depth review of relevant published literature on these wool characteristics in sheep is presented. more »
  • How important is Fiber Quality in Alpacas?

    Crimp is related to the fibers as they appear in an intact lock. Its measured in waviness per unit of length. The prevailing theory is the greater the crimp, the finer the fleece. Cameron pointed out this isn't always the case, however. Many Peruvian alpacas have recently been examined that have little or no crimp, but very fine fleeces. more »
  • How to Evaluate Alpaca Fiber

    There are no perfect alpacas. There is great room for improvement in all of our herds, and we can watch it happen before our eyes in our very own pastures, when we make good breeding choices. Once you learn to judge alpaca conformation and fleece, you'll see that not even blue ribbon winners are perfect. Learning to evaluate fleece will help you to make the best breeding choices for your alpacas. more »

ContactHelp