- In many wool-growing businesses, Staple Strength (SS) is an important profit driver affecting clean price. SS is heritable and good responses to direct selection have been shown over a reasonable number of years. However direct measures of SS on individual animals is expensive and for many years breeders have used Coefficient of Variation of Fibre Diameter (FDCV) as a proxy for direct measurement of SS, since FDCV is measured and reported automatically when Fibre Diameter is now measured. FDCV is genetically moderately strongly correlated with SS. This makes FDCV a useful indirect indicator of SS, without incurring the expense of measuring individual sheep directly for SS. In recent years, breeders have been measuring their sheep at earlier ages and in shorter wool. There have been questions raised regarding the effect Staple Length (SL) has on the accuracy of SS breeding values. more »
- 1. Objectives of sheep classing Visual sheep classing is practised by all breeders and is essential to the quality of a woolgrower’s flock and enterprise profitability. Visual classing is quick, efficient, and cost effective for a large number of traits. It can be done at lamb marking, weaning, shearing, replacement selections and joining, although the major classing events usually take place with the annual selection of replacement ewes and rams. The objective of sheep classing is to identify and retain those sheep in a flock that will improve flock returns both now and in the future through more productive progeny. Improving productivity comes by increasing income and also reducing costs. Constant improvement is needed to overcome annual inflation increases to farm costs and competition from other enterprises. While productivity increases are the key, they should not make the animal more susceptible to disease, nor adversely affect doing ability, which leads to higher costs. more »
- Staple strength is an important price factor for many wool types and wool growing regions. However direct staple strength assessments for breeding purposes are very expensive. The indirect assessment for staple strength, Coefficient of Variation for Fibre Diameter (fibre diameter variability along and across the fibre), is proven to be well correlated with staple strength within a flock, but less so for across-flock comparisons. AWI and the Department of Agriculture and Food WA have investigated if Coefficient of Variation across the fibre alone, is a better predictor of staple strength for breeding purposes. more »
- Genetic evaluation systems require the accurate estimation of genetic parameters. The genetic, phenotypic and environmental parameters for live weight and objectively measured wool traits were estimated for a South African Merino flock. Records of the Tygerhoek Merino resource flock were used to estimate these parameters. The database consisted of records of 4 495 animals, the progeny of 449 sires and 1 831 dams born in the period 1989 to 2004. The pedigree records used have been collected between 1969 and 2004. Direct heritability estimates (h²a) for 16-month live weight (LW) and objectively measured wool traits ranged from 0.20 for staple strength (SS) to 0.68 for fibre diameter (FD). Maternal heritability estimates ranged from 0.05 for LW and FD, to 0.10 for clean fleece weight (CFW). The proportion of the total phenotypic variance due to the maternal permanent environment variance (c²pe) amounted to 5% for fleece weights. The genetic correlation between animal effects for LW, greasy fleece weight (GFW) and CFW were -0.28, -0.65 and -0.70 respectively. The genetic correlation between LW and CFW was positive, but low at 0.14. The other important genetic correlations among the wool traits ranged from low to high, and were variable in sign ((for GFW with CFW (0.87) and with staple length (SL – 0.18); CFW with clean yield (CY – 0.33) and with SL (0.29); FD with CY (-0.09), with SL (0.15), with SS (0.40) and with standard deviation of FD (SDFD – 0.38):CY with SL (0.33) and with SDFD (0.10); SS with coefficient of variation of FD (CVFD – -0.57) and with SDFD (-0.28); CVFD with SDFD (0.87)). These results suggested that worthwhile responses in the objectively measured traits can be achieved through direct and indirect selection. more »
- Felting of wool is a major problem in the manufacture of knitted and woven products, as it is related to yarn shrinkage, which is a critical problem of the finished product. Felting is a unique property of animal fibres and a desirable characteristic in the making of felted products. However, felting is a particular problem with fine wools. Non-shrink woollen products are currently produced using chemical treatments during processing. Chlorination is the first step and it degrades the fibre surface. Fibres are then coated with polymers to cover degraded scale structures and/or to bond fibres together to prevent felt shrinkage. This process minimises frictional effects on wool fibre surfaces, limits relative motion of fibres in all directions, and increases hydrophilic properties of the fibre surface (Chen et al., 2000). Although these processes have been highly successful in shrink-proofing wool, they are expensive and detrimental to the fibre. Furthermore, the chlorination process is environmentally unfriendly and there are difficulties with residue disposal. Greeff and Schlink (2001) have shown that felting is a heritable trait, which implies that altering the ability of wool to felt through breeding may make a considerable contribution to wool’s processing properties and will enhance wool’s clean and green image. However, felting is strongly influenced by fibre curvature, fibre diameter (Scheepers and Slinger, 1968 ; Hunter et al., 1982 ; Kenyon et al., 1999 ; Veldsman and Kritzinger, 1960) and clean yield (Schlink et al., 2000). Lipson and Rothery (1975) showed that Merino wool has a significantly higher felting ability than Polwarth wool in spite of the fact that there were no differences in fibre surface friction, scale frequency or elastic properties between the breeds.They did note significant differences between the breeds in “swellings and necks” at intervals along the fibres, but conclusions were not clear because these wools differed in micron and curvature was not recorded. The OFDA2000 (Brims, 1997) has algorithms to measure variability and unevenness traits along the fibre which may be used to identify samples that may cause spinning problems. The objective of this study was to identify whether these along fibre variability traits influence felting and whether they are heritable. more »