Tag: "selection"

  • 1
  • 2
  • Sources of variation in fibre diameter attributes of Australian alpacas and implications for fleece evaluation and animal selection were investigated using data collected in the years 1994–97, from 6 properties in southern Australia. Data were analysed using REML (multiple regression analysis) to determine the effect on mean fibre diameter (MFD) and coefficient of variation of MFD (CV(FD)) of age, origin (property), sex (entire male, female), breed (Huacaya, Suri), liveweight, fibre colour, individual, and interactions of these effects. The mean (n = 100) age (range) was 4.2 years (0.1–11.9), liveweight 72.0 kg (12.0–134 kg), MFD 29.1 μm (17.7–46.6 μm), CV(FD) 24.33% (15.0–36.7%). A number of variables affected MFD and CV(FD). MFD increased to 7.5 years of age, and correlations between MFD at 1.5 and 2 years of age with the MFD at older ages were much higher than correlations at younger ages. Fibre diameter 'blowout' (increase with age) was positively correlated with the actual MFD at ages 2 years and older. There were important effects of farm, and these effects differed with year and shearing age. Suris were coarser than Huacayas with the effect reducing with increased liveweight; there was no effect of sex. Fleeces of light shade were 1 μm finer than dark fleeces. CV(FD) declined rapidly between birth and 2 years of age, reaching a minimum at about 4 years of age and then increasing; however, CV(FD) measurements on young animals were very poor predictors of CV(FD) at older ages, and the response of CV(FD) to age differed with farm and year. Suris had a higher CV(FD) than Huacayas on most properties, and MFD, liveweight, and sex did not affect CV(FD). Fleeces of dark shade had higher CV(FD) than fleeces of light shade in 2 of the years. It is concluded that there are large opportunities to improve the MFD and CV(FD) of alpaca fibre through selection and breeding. The potential benefit is greatest from reducing the MFD and CV(FD) of fibre from older alpacas, through reducing the between-animal variation in MFD and CV(FD). Sampling alpacas at ages more »
  • There is widespread interest in the use of skin properties for the selection of superior Merino genotypes. This is despite the fact that no selection experiments to date have demonstrated beneficial effects on production traits from selection based solely on skin traits. Two studies have examined whether the inclusion of skin traits in a realistic selection program improves the rate of genetic progress towards a breeding objective emphasising fleece weight and fibre diameter. Both indicated little benefit from including the skin traits. However the impact of the skin traits will depend on their heritabilities and their genetic associations with one another and with the traits in the breeding objective. There is increasing evidence that the genetic parameters differ between the Merino strains so results from one strain cannot be extrapolated to another. In this paper we examine the effects of including classer assessed skin quality and two objectively measured skin characters, skin biopsy weight and follicle density, on the genetic and economic gain made over and above that made using a standard selection index in South Australian Strongwool Merinos. The results indicate that substantial additional genetic gain can be made by including the skin traits. This was particularly true at low micron premiums where addition of all three skin traits increased the economic gain by 25%. The genetic improvement in adult clean fleece weight by including all three skin traits at this premium, was increased from 0.9% per annum to 1.4% per annum with a corresponding slight reduction in the decrease in mean fibre diameter. At higher micron premiums the benefit of including the skin traits was substantially less, again reflecting the tendency for skin trait inclusion to influence fleece weight to a larger extent than fibre diameter. Inclusion of the skin traits had little impact on coefficient of variation of fibre diameter, staple strength and staple length. Our results suggest that consideration of some skin traits may lead to moderate genetic gains and be worthwhile including in breeding programs for Strongwool Merinos, but they do not lend support to notions that consideration of skin traits will produce dramatic increases in fleece weights with concomitant large decreases in fibre diameter. more »
  • This information note aims to assist ram buyers interpret raw measurements on animals to better select rams for individual needs. more »
  • Two breeders' use of follicle density as a selection tool for fineness and uniformity. more »
  • The coefficient of variation of fibre diameter (CVFD) within the mid-side fleece sample is currently used to predict staple strength (SS) in Merino sheep (4.5 year old ewes). CVFD measures fibre diameter variation both between fibres and along wool fibres. It has been suggested that selection to improve staple strength should concentrate on reducing fibre diameter ariation along the staple, rather than CVFD. Our results indicate that measurements of fibre diameter variability along the staple had low heritabilities to moderate (0.01 to 0.20) and a low to moderate (0.15 to -0.43) phenotypic correlation with staple strength. In comparison, CVFD was highly heritable (0.78) and had a moderate (-0.44) phenotypic correlation with S. This suggests that there would be no advantage in using measures of fibre diameter variability along the staple as an indirect selection criterion for SS compared with the information provided by CVFD measured in a mid-side fleece sample. more »
  • 1
  • 2

ContactHelp