Tag: "genetics"

  • With all the discussion about gray alpacas taking place online on the various alpaca chat forums, I thought it would be worthwhile to reiterate my current understanding of the different kinds of grays and how their phenotypes are passed on. I would suggest that there are at least four kinds of alpacas that are called grays. more »
  • Humans and alpacas share many things in common, along with the rest of the animal kingdom, including how they pass their genes on to the next generation. Humans have over 20,000 genes spread across 23 pairs of chromosome and some 3 billion base pairs of DNA. Alpacas likely have between 15,000 and 20,000 genes (just a guess at this point) spread across 37 pairs of chromosomes and unknown billions of base pairs of DNA. The first complete alpaca genome was sequenced in 2008, so many of these statistics will shortly become known. more »
  • Every now and then, on an alpaca farm somewhere in Australia, the day brings an unexpected arrival, a new suri cria ... with spots! When that cria has two solid coloured parents, it is more of a surprise. more »
  • To make predictions about coat color, or almost any other trait, in cria from specific breedings you need to understand some basic rules of genetics. Coat color is determined by genetics. When people say something is genetically determined, what they are really talking about is DNA. DNA is what codes for all of the proteins (things like hemoglobin, albumin, melanin, insulin, keratin tissues, hormones all the stuff that make up an alpaca), and for the instructions on how, when and where to make these proteins within the alpaca. Segments of DNA that code for proteins are called genes. more »
  • This paper reviews genetics of fibre production and fleece characteristics in small ruminants, Angora rabbit and South American camelids with a special distinction between single-coated (SC) and double-coated (DC) species. Considering the biology of fibre production, there are variations in coat composition and structure, fibre growth pattern and fibre structure and quality between these two main kinds of fibre-producing animals. In SC species, all fibres are nearly similar in dimensions and are produced from individual follicles that have a very long period, essentially permanent, of active growth without a synchronous phase of rest between follicles. In contrast, in DC species the fleece comprises a coarse outer coat and a fine inner coat with variations of coat composition and structure, and fibre growth pattern according to the season with a well-defined duration of fibre growth. Genetic basis of hair growth pattern, coat composition and fibre structure are different between species. In small ruminants, these coat characters are additive and because of several genes whereas in rabbit, several autosomal recessive genes determine fibre growth, coat composition and structure. In alpaca, the fleece type (Suri or Huacaya) is determined by a single dominant gene. This paper also reviews genetic parameters of fibre production traits in Angora goat, Angora rabbit and alpaca in which many aspects of the genetic basis of fibre production are analogous. There are many traits controlling both fibre quality and fibre quantity, and most of these traits tend to be moderately to strongly inherited so that a rapid genetic progress in any traits is possible and indeed has been achieved. However, there are differences in breeding programmes. In DC Angora rabbit, selection for one single trait, the easy measurable total fleece weight has general beneficial effects on fleece quality. However, because of antagonistic relations between qualitative and quantitative traits in SC species, achieving this goal requires a multi-trait selection index approach. Gene mapping studies have recently identified several putative quantitative trait loci and major genes affecting fibre and fleece characteristics in sheep, goat and rabbit are reviewed. The whole genome sequence of sheep and rabbit will be available in the near future and the use of high-density single nucleotide polymorphism chip will allow fine mapping and dissection of the genetic basis of many production traits including fibre production and fleece characteristics. The application of these techniques will thus contribute to improving the efficiency, profitability and sustainability of small ruminant and rabbit fibre production. more »

ContactHelp